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Introduction

Having a facility with block matrix notation is crucial in matrix
computations because it simplifies the derivation of many central
algorithms.

Moreover, “block algorithms” are increasingly important in high
performance computing. By a block algorithm we essentially mean an
algorithm that is rich in matrix-matrix multiplication.

Algorithms of this type turn out to be more efficient in many computing
environments than those that are organized at a lower linear algebraic level.
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Block Matrix Notation

Column and row partitionings are special cases of matrix blocking. In
general we can partition both the rows and columns of an m-by-n matrix
A to obtain

A =


A11 · · · A1r m1

...
...

Aq1 · · · Aqr mq

n1 nr
where m1 + · · ·+ mq = m1 n1 + · · ·+ nr = n1 and Aαβ designates the
(α, β) block or submatrix. With this notation, block Aαβ has dimension
mα-by-nβ and we say that A = (Aαβ) is a q-by-r block matrix.
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Block Matrix Manipulation

Block matrices combine just like matrices with scalar entries as long as
certain dimension requirements are met. For example, if

B =


B11 · · · B1r m1

...
...

Bq1 · · · Bqr mq

n1 nr

,

then we say that B is partitioned conformably with the matrix A above.
The sum C = A + B can also be regarded as a q-by-r block matrix:

C =

C11 · · · C1r
...

...
Cq1 · · · Cqr

 =

A11 + B11 · · · A1r + B1r
...

...
Aq1 + Bq1 · · · Aqr + Bqr

 .
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Block Matrix Manipulation (Contd...)

The multiplication of block matrices is a little trickier. We start with a
pair of lemmas.

Lemma 1.
If A ∈ Rm×p , B ∈ Rp×n,

A =


A1 m1

...
Aq mq

B = [ ]B1 , . . . , Br

n1 nr
,

then

AB = C =


C11 · · · C1r m1

...
...

Cq1 · · · Cqr mq

n1 nr

where Cαβ = AαBβ for α = 1 : q and β = 1 : r .
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Block Matrix Manipulation (Contd...)

Proof. First we relate scalar entries in block Cαβ to scalar entries in C .
For 1 ≤ α ≤ q, 1 ≤ β ≤ r , 1 ≤ i ≤ mα, and 1 ≤ j ≤ nβ we have

[Cαβ]ij = cλ+i ,µ+j

where

λ = m1 + · · ·+ mα−1

µ = n1 + · · ·+ nβ−1.

But

cλ+i ,µ+j =

p∑
k=1

aλ+i ,kbk,µ+j =

p∑
k=1

[Aα]ik [Bβ]kj = [AαBβ]ij .

Thus, Cαβ = AαBβ.
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Block Matrix Manipulation (Contd...)

Lemma 2.

If A ∈ Rm×p,B ∈ Rp×n,

A = [ ]A1 , · · · , As

p1 ps

, and B =


B1 p1

...
Bs ps

,

then

AB = C =
s∑

γ=1

AγBγ .
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Block Matrix Manipulation (Contd...)

Proof. We set s = 2 and leave the general s case to the reader. For
1 ≤ i ≤ m and 1 ≤ j ≤ n we have

cij =

p∑
k=1

aikbkj =

p1∑
k=1

aikbkj +

p1+p2∑
k=p1+1

aikbkj

= [A1B1]ij + [A2B2]ij = [A1B1 + A2B2]ij .

Thus, C = A1B1 + A2B2.

For general block matrix multiplication we have the following result:
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Block Matrix Manipulation (Contd...)

Theorem 3.

If

A =


A11 · · · A1s m1

...
...

Aq1 · · · Aqs mq

p1 ps

, B =


B11 · · · B1r p1

...
...

Ba1 · · · Bar ps

n1 nr

,

and we partition the product C = AB as follows,

C =


C11 · · · C1r m1

...
...

Cq1 · · · Cqr mq

n1 nr

,

then
Cαβ =

s∑
γ=1

AαγBγβ α = 1 : q, β = 1 : r .
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Block Matrix Manipulation (Contd...)

A very important special case arises if we set s = 2, r = 1, and n1 = 1:[
A11 A12

A21 A22

] [
x1
x2

]
=

[
A11x1 + A12x2
A21x1 + A22x2

]
.

This partitioned matrix-vector product is used over and over again in
subsequent chapters.
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Submatrix Designation

As with “ordinary” matrix multiplication, block matrix multiplication can
be organized in several ways. To specify the computations precisely, we
need some notation.

Suppose A ∈ Rm×n and that i = (i1, . . . , ir ) and j = (j1, . . . , jc) are integer
vectors with the property that

i1, . . . , ir ∈ {1, 2, . . . ,m}
j1, . . . , jc ∈ {1, 2, . . . , n}.

We let A(i , j) denote the r -by-c submatrix

A(i , j) =

A(i1, j1) · · · A(i1, jc)
...

...
A(ir , j1) · · · A(ir , jc)

 .
P. Sam Johnson Block Matrices and Algorithms 11/32



Submatrix Designation (Contd...)

If the entries in the subscript vectors i and j are contiguous, then the
“colon” notation can be used to define A(i , j) in terms of the scalar entries
in A.

In particular, if 1 ≤ i1 ≤ i2 ≤ m and 1 ≤ j1 ≤ j2 ≤ n, then A(i1 : i2, j1 : j2)
is the submatrix obtained by extracting rows i1 through i2 and columns j1
through j2, e.g,

A(3 : 5, 1 : 2) =

a31 a32
a41 a42
a51 a52

 .
While on the subject of submatrices, recall from §1.1.8 that if i and j are
scalars, then A(i , :) designates the ith row of A and A(:, j) designates the
jth column of A.
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Block Matrix Times Vector

An important situation covered by Theorem 3 is the case of a block matrix
times vector. Let us consider the details of the gaxpy y = Ax + y where
A ∈ Rm×n, x ∈ Rn, y ∈ Rm, and

A =


A1 m1

...
Aq mq

y =


y1 m1

...
yq mq

.

We refer to Ai as the ith block row. If m.vec = (m1, . . . ,mq) is the vector
of block row “heights”, then fromy1...

yq

 =

A1
...
Aq

 x +

y1...
yq

 .
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Block Matrix Times Vector (Contd...)

we obtain

last=0
for i=1:q

first=last+1
last=first+m.vec(i)-1
y(first:last)=A(first:last,:)x+y(first:last)

end

Each time through the loop an “ordinary” gaxpy is performed so
Algorithms 1.1.3 and 1.1.4 apply.

Another way to block the gaxpy computation is to partition A and x as
follows:

A = [ ]A1 , . . . , Ar

n1 nr

x =


x1 n1

...
xr nr

.
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Block Matrix Times Vector (Contd...)

In this case we refer to Aj as the jth block column of A. If
n.vec = (n1, . . . , nr ) is the vector of block column widths, then from

y = [A1, . . . ,Ar ]

x1...
xr

+ y =
r∑

j=1

Ajxj + y

we obtain
last=0
for j=1:r

first=last+1
last=first+n.vec(j)-1
y=A(:,first:last)x(first:last)+y

end

Again, the gaxpy’s performed each time through the loop can be carried
out with Algorithm 1.1.3 or 1.1.4.
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Block Matrix Multiplication

Just as ordinary, scalar-level matrix multiplication can be arranged in
several possible ways, so can the multiplication of block matrices. Different
blockings for A,B, and C can set the stage for block versions of the dot
product, saxpy, and outer product algorithms of §1.1. To illustrate this
with a minimum of subscript clutter, we assume that these three matrices
are all n-by-n and that n = N` where N and ` are positive integers.

If A = (Aαβ), B = (Bαβ), and C = (Cαβ) are N-by-N block matrices with
`-by-` blocks, then from Theorem 1.3.3

Cαβ =
N∑
γ=1

AαγBγβ + Cαβ α = 1 : N, β = 1 : N.
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Block Matrix Multiplication (Contd...)

If we organize a matrix multiplication procedure around this summation,
then we obtain a block analog of Algorithm 1.1.5:

for α = 1 : N
i = (a− 1)`+ 1 : a`
for β = 1 : N

j = (β − 1)`+ 1 : β`
for γ = 1 : N

k = (γ − 1)`+ 1 : γ`
C (i , j) = A(i , k)B(k, j) + C (i , j)

end
end

end

Note that if ` = 1, then α ≡ i , β ≡ j , and γ ≡ k and we revert to
Algorithm 1.1.5.
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Block Matrix Multiplication (Contd...)

To obtain a block saxpy matrix multiply, we write C = AB + C as

[C1, . . . ,CN ] = [A1, . . . ,AN ]

B11 · · · B1N
...

. . .
...

BN1 · · · BNN

+ [C1, . . . ,CN ]

where Aα,Cα ∈ Rn×`, and Bαβ ∈ R`×`. From this we obtain

for β = 1 : N
j = (β − 1)`+ 1 : β`
for α = 1 : N

i = (α− 1)`+ 1 : α`
C (:, j) = A(:, i)B(i , j) + C (:, j)

end
end

This is the block version of Algorithm 1.1.7.
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Block Matrix Multiplication (Contd...)

A block outer product scheme results if we work with the blockings

A = [A1, . . . ,AN ] B =

B
T
1
...

BT
N


where Aγ ,Bγ ∈ Rn×`. From Lemma 1.3.2 we have

C =
N∑
γ=1

AγB
T
γ + C

and so

for γ = 1 : N
k = (γ − 1)`+ 1 : γ`
C = A(:, k)B(k , :) + C

end

This is the block version of Algorithm 1.1.8.
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Complex Matrix Multiplication

Consider the complex matrix multiplication update

C1 + iC2 = (A1 + iA2)(B1 + iB2) + (C1 + iC2)

where all the matrices are real and i2 = −1. Comparing the real and
imaginary parts we find

C1 = A1B1 − A2B2 + C1

C2 = A1B2 + A2B1 + C2

and this can be expressed as follows:[
C1

C2

]
=

[
A1 −A2

A2 A1

] [
B1

B2

]
+

[
C1

C2

]
.

This suggests how real matrix software might be applied to solve complex
matrix problems. The only snag is that the explicit formation of

A =

[
A1 −A2

A2 A1

]
.

requires the “double storage” of the matrices A1 and A2.
P. Sam Johnson Block Matrices and Algorithms 20/32



A Divide and Conquer Matrix Multiplication

We conclude this section with a completely different approach to the
matrix-matrix multiplication problem. The starting point in the discussion
is the 2-by-2 block matrix multiplication[

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
where each block is square.

In the ordinary algorithm, Cij = Ai1B1j + Ai2B2j . There are 8 multiplies
and 4 adds.
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A Divide and Conquer Matrix Multiplication (Contd...)

Strassen (1969) has shown how to compute C with just 7 multiplies and 18 adds:

P1 = (A11 + A22)(B11 + B22)

P2 = (A21 + A22)B11

P3 = A11(B12 − B22)

P4 = A22(B21 − B11)

P5 = (A11 + A12)B22

P6 = (A21 − A11)(B11 + B12)

P7 = (A12 − A22)(B21 + B22)

C11 = P1 + P4 − P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 − P2 + P6.
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A Divide and Conquer Matrix Multiplication (Contd...)

These equations are easily confirmed by substitution. Suppose n = 2m so
that the blocks are m-by-m. Counting adds and multiplies in the
computation C = AB we find that conventional matrix multiplication
involves (2m)3 multiplies and (2m)3 − (2m)2 adds.

Counting adds and multiplies in the computation C = AB we find that
conventional matrix multiplication involves (2m)3 multiplies and
(2m)3 − (2m)2 adds. In contrast, if Strassen’s algorithm is applied with
conventional multiplication at the block level, then 7m3 multiplies and
7m3 + 11m2 adds are required.

If m� 1, then the Strassen method involves about 7/8ths the arithmetic
of the fully conventional algorithm.
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A Divide and Conquer Matrix Multiplication (Contd...)

Now recognize that we can recur on the Strassen idea. In particular, we
can apply the Strassen algorithm to each of the half-sized block
multiplications associated with the Pi .

Thus, if the original A and B are n-by-n and n = 2q, then we can
repeatedly apply the Strassen multiplication algorithm.

At the bottom “level,” the blocks are 1-by-1. Of course, there is no need
to recur down to the n = 1 level.

When the block size gets sufficiently small, (n ≤ nmin), it may be sensible
to use conventional matrix multiplication when finding the Pi .
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A Divide and Conquer Matrix Multiplication (Contd...)

Here is the overall procedure:

Algorithm 1.3.1 (Strassen Multiplication) Suppose n = 2q and that A ∈ Rn×n and B ∈ Rn×n.
If nmin = 2d with d ≤ q, then this algorithm computes C = AB by applying Strassen procedure
recursively q − d times.

function: C = strass(A,B, n, nmin)
if n ≤ nmin then

C = AB
else

m = n/2; u = 1 : m; v = m + 1 : n;
P1 = strass(A(u, u) + A(v , v),B(u, u) + B(v , v),m, nmin)
P2 = strass(A(v , u) + A(v , v),B(u, u),m, nmin)
P3 = strass(A(u, u),B(u, v)− B(v , v),m, nmin)
P4 = strass(A(v , v),B(v , u)− B(u, u),m, nmin)
P5 = strass(A(u, u) + A(u, v),B(v , v),m, nmin)
P6 = strass(A(v , u)− A(u, u),B(u, u) + B(u, v),m, nmin)
P7 = strass(A(u, v)− A(v , v),B(v , u) + B(v , v),m, nmin)
C(u, u) = P1 + P4 − P5 + P7

C(u, v) = P3 + P5

C(v , u) = P2 + P4

C(v , v) = P1 + P3 − P2 + P6

end
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A Divide and Conquer Matrix Multiplication (Contd...)

Unlike any of our previous algorithms strass is recursive, meaning that it
calls itself. Divide and conquer algorithms are often best described in this
manner.

We have presented this algorithm in the style of a MATLAB function so
that the recursive calls can be stated with precision.

The amount of arithmetic associated with strass is a complicated function
of n and nmin.

If nmin � 1, then it suffices to count multiplications as the number of
additions is roughly the same.
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A Divide and Conquer Matrix Multiplication (Contd...)

If we just count the multiplications, then it suffices to examine the deepest
level of the recursion as that is where all the multiplications occur.

In strass there are q − d subdivisions and thus, 7q−d conventional
matrix-matrix multiplications to perform.

These multiplications have size nmin and thus strass involves about
s = (2d)37q−d multiplications compared to c = (2q)3, the number of
multiplications in the conventional approach.

Notice that
s

c
=

(
2d

2q

)3

7q−d =

(
7

8

)q−d
.
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A Divide and Conquer Matrix Multiplication (Contd...)

If d = 0, i.e., we recur on down to the 1-by-1 level, then

s =

(
7

8

)q

c = 7q = nlog2 7 ≈ n2.807.

Thus, asymptotically, the number of multiplications in the Strassen
procedure is O(n2.807).

However, the number of additions (relative to the number of
multiplications) becomes significant as nmin gets small.

Example 4.

If n = 1024 and nmin = 64, then strass involves (7/8)10−6 ≈ .6 the
arithmetic of the conventional algorithm.
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Problems

1. Generalize (1.3.3) so that it can handle the variable block-size
problem covered by Theorem 1.3.3.

2. Generalize (1.3.4) and (1.3.5) so that they can handle the variable
block-size case.

3. Adapt strass so that it can handle square matrix multiplication of any
order. Hint: If the “current” A has odd dimension, append a zero row
and column.

4. Prove that if

A =

A11 · · · A1r
...

. . .
...

Aq1 · · · Aqr


is a blocking of the matrix A, then

AT =

A
T
11 · · · AT

q1
...

. . .
...

AT
1r · · · AT

qr

 .
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Problems (Contd...)

5. Suppose n is even and define the following function from Rn to R:

f (x) = x(1 : 2 : n)T x(2 : n) =

n/2∑
i=1

x2i−1x2i

(a) Show that if x , y ∈ Rn then

xT y =

n/2∑
i=1

(x2i−1 + y2i )(x2i + y2i−1)− f (x)− f (y)

(b) Now consider the n-by-n matrix multiplication C = AB. Give an
algorithm for computing this product that requires n3/2 multiplies once
f is applied to the rows of A and the columns of B.
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Problems (Contd...)

6. Prove Lemma 1.3.2 for general s. Hint. Set

pT = p1 + · · ·+ pγ−1 γ = 1 : s + 1

and show that

cij =
s∑

γ=1

pµ+1∑
k=pγ+1

aikbkj .

7. Use Lemmas 1.3.1 and 1.3.2 to prove Theorem 1.3.3. In particular, set

Aγ =

A1γ
...

Aqγ

 and Bγ =
[
Bγ1 · · · Bγr

]
and note from Lemma 1.3.2 that

C =
s∑

γ=1

AγBγ .

Now analyze each AγBγ with the help of Lemma 1.3.1.
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